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Approximate Solutions for Certain Optimal Stopping Problems . 

Albert John Petkau 

1.  Introduction 

The following optimal stopping problem (which is one of several dif- 

ferent problems which have come to be known as the one-armed bandit problem) 

has arisen in a number of statistical applications (Chernoff and Ray 

(1965);, Chernoff (±9&]),  Mallik (1971)):  Let X(t) be a Wiener process 

2 2 
described by E[dX(t)] = u.dt and Var[dX(t)] = or »dt where <j    is 

presumed known. One is permitted to stop observing the process X(t) 

at any time t, 0 < t < N, and receive a payoff X(t). The unknown 

parameter u  is assumed to have a N(n_,cr_) prior. What is the optimal 

stopping procedure? 

It is easy to verify that the posterior distribution of n given 

X(t! ), 0 < t' < t,  is N(Y*(s*),s*) where 

11 a:2 + X(t)o--2 

(1.1) Y*(s*) = -°JL_^  
<j       + tcr 

and 

(1.2) s* = (cr~2 + to-"2)" 

2  ,    „   , -2 . „ -2-'1 

Here s* varies from s* = <x  to s* = (cr~ + Ncr )    Furthermore, the 

process Y*(s*) is a Wiener process (in the -s* scale) described by 



E[dY*(s*)] = 0 and Var[dY*(s*)] = -ds*,  starting from Y*(s*) = \i    . 

The loss upon stopping at  (Y*(s*)jS*) is -X(t) which from (l.l) is a 

linear function of -Y*(s*)/a*. Applying the transformation s = a*/a*, 

Y(s) = Y*(s*)/s**^  leads to a normalized version of this stopping problem 

2  -2    -2 
where s varies from s„ = cr„(o-  + Ncr ) to s, = 1 and in which the 

0   0 0 1 

stopping cost is given by d(y,s) defined by 

(1-3) d(y,s) = -y/s 

for s > 1 with stopping enforced at s = 1. 

This normalized problem is a special case of the following optimal 

stopping problem;  Given a Wiener process  (Y(s), s > s ) in the -s 

scale described by E[dY(s)] = 0  and Var[dY(s)] = •ds and starting at 

Y(s ) = y0^  find the stopping time S to minimize E[d(Y(S),S)].  If we 

define p(y ^s„) = inf b(yn,s ) where b(y_,s ) is the risk associated 

with a particular stopping time and the infimum is taken over all such 

stopping times, p(y,s) represents the best that can be achieved once 

(y,s) has been reached^ irrespective of how it was reached» An optimal 

procedure is then described by the continuation set 1$ =  {(y,s): p(y,s) < d(y,s)}, 

Chernoff (1968) has demonstrated that one should expect the solution (p,(£) 

of the stopping problem to be a solution of the following free boundary problem: 

2 PyyCy^s) = Ps(y„s)  for  (y,s) e £ , 

(I.1*) P(y^s) = d(y,s)   for (y,s) e 6' , 

Py(yys) = dy(y,s)  for  (y,s) E ^ • 



Furthermore,,   for any such stopping problem,  Van Moerbeke   (197^+) has shown 

that one should never stop at points     (y,s)    at which    — d    (y,s)-d   (y,s) < 0. 

Applying this criterion to the normalized version of the stopping 

problem described above, hereinafter referred to as the one-armed bandit 

problem,  one finds that    {(y,s):  y > 0,   s > 1}    is a subset of the optimal 

continuation region    fc .     Chernoff and Ray   (1965) have shown that for this 

problem   (?    can be described as      <$ ~ {(y,s):  y > y(s),  s > 1}     and have 

determined asymptotic expansions for 'the boundary curve    y(s)    in the regions 

of large    s    and    s    close to    1.     The leading terms in these expansions are 

given by 

l/2 y(s) ~ -(2süns) as      s -*<» 

y(s) ~ ~0.6U(s-l) as      s -+ 1 . 

The scale z = -y/s and t = l/s is more appropriate for applications 

and these expansions are illustrated in this scale in Chernoff and Ray (I965). 

It is evident from this illustration that these asymptotic expansions 

are inadequate as a complete description of the optimal continuation region. 

An approximation to the optimal continuation region is required as a 

description of the optimal procedure in the region where the asymptotic 

expansions are clearly inadequate„ 

Although it is possible that refined methods of asymptotic analysis 

could lead to expansions which would provide an adequate description of 

the optimal procedure, the purpose of the present paper is to describe 

simple methods which lead to arbitrarily accurate numerical approximations to 

the optimal continuation region for the one-armed bandit problem. Although 
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most of the discussion in the present paper will concentrate on the one- 

armed bandit problem, these same methods could be applied with equal 

facility to any optimal stopping problem of the general form described 

above, 

2»  An Analogous Discrete Problem 

Consider the process Y'(s') which starts at Y!(l+n-A) = ys  and 

l/2 1 
is defined by Y' (s1 -A) = Y'(S') +A    each with probability p . This 

process is observed for at most n successive times and the cost associated 

with stopping the process at any point  (ySs? ) is given by d(y' ,s! ) 

defined by  (1.3). The problem is to find a stopping time to minimize the 

expected loss. We shall denote the optimal expected loss by p1(y*,s'). 

For this problem, a backward induction algorithm becomes 

(2.1)  p» (y1,1+n-A) = ndn{d(y» ,1-ta-A), |[p! (y1 +A1 ,l+(n-l>A) 

+ P' (y' -A1/2,1+ (n-l>A) ]} 

for n > 1 with , p' (y1 ,l) =  d(y' ,l).     It is easy to verify using the 

methods of Chernoff and Petkau (1976) that the optimal stopping set can 

be described as {(y!,l+n»A); y' < y (A), n > 1} where for each fixed 

value of A> . (y (A)} is a non-increasing non-positive sequence. Note 

that this set does not depend upon the initial point«, Further note 

that direct application of (2.1) yields y1(A) = 0 » 

Since Y!(s') is a process of independent increments with mean zero 

and variance one per unit change in -s',  any stopping problem for the 



Wiener process Y(s) of the previous section can be imitated by the use 

of a small value of A in the Y* (s' ) process*  As A approaches zero, 

the solution of the analogous discrete problem would be expected to 

converge to the solution of the Wiener process problem.  In particular, 

for the one-armed bandit problem this leads to the initial approximation 

(2.2) y(l+n.A) « yQ(A) 

where    y(l+n.A)    denotes the optimal boundary for the one-armed bandit 

problem evaluated at    s = 1+n-A . 

It remains to evaluate the sequence    {y   (A)).     Consider the    Y* (s' ) 

process defined as above on the grid of points    {(y*, s'):   s' = l+n»A , 

y»   = c+k-A      |  n = 0,1,2,...,k=0,   + 1,   +2,...}   .    Note that the grid is 

l/2 completely specified by the parameter    c(for convenience,  assume 0 < c < A      ). 

Examination of  (2.1.) with the particular form of    d(y, s)    given in  (1.3) 

reveals that for any given choice of   A?    if the points     {(y',1+n-A):  y'  < y*} 

1/2 
are stopping points then so are the points  {(y'^l+(n+l)»A): y' < y*-A  }. 

This observation, together with the fact that the sequence {y (A)} is non- 

increasing, implies that when using the backward induction algorithm (2.l) 

to classify the grid points as either stopping or continuation points, the 

comparisons implied by (2.l) need be carried out at only a single value of 

y'  for each fixed value of s'.  The algorithm (2.l) can now be easily imple- 

mented In a direct fashion. 

Due to the special nature of the one-armed bandit problem, namely 

the fact that all points  (y, s) with y > 0 and s > 1 are continuation 

points, one might expect to be able to improve somewhat upon the naive 

approach outlined above.  Consider a particular path of the Y' (s1 ) process 



l/2 
originating at the point     (ySs* ) =  (c+2«A      ,  l+n«A).     The path of the 

1/2 Y'(s1)    process could hit the line    y'   = c+A for the first time at 

s"   = l+(n-l)«A,l+(n-3)*A,... »    Alternately,  the path could remain above 

1/2 
the line y1   = c+A all the way to    s'   = 1.     Noting that the points 

(c+A      )  s! )    are continuation points for all    s1   > 1  (since y  (A) = 0 and 

the sequence    y   (A)    is non-increasing) leads to the relation 

(2.5) >• (c+2«.A1/%l+n«A)  =    £   P P' (c-»A1'2,l+(n-Bi)-A) 
m=l 

n+1 
+ 

-1 /o 

I    qn kd(c+(k+i).A'L/"A) 
k=l 

where p  is the probability that an ordinary random walk starting at 

0 first passes through 1 at time m and a T_ is the probability 

that an ordinary random walk starting at 0 stays above -1 until time 

n and achieves level k-1 at time n. From Feller (1968, p. 89, 

Theorem 2) one finds 

(2.4) Pm= < 
, , m , 
1 1   \    2-m 
m I mjjL 

2 

for m even 

for m   odd 

In addition we have the recursive relation p ,n  = —7=- p  with v-,   = ;r 
•^m+2  m+3 m      ^1  2 

and p0 = 0. From Feller (1968^ p. 73,  Ballot Theorem) one also finds 

that 



0 for n even and k odd 

(2.5) ci . = J 0 for n odd and k even 
• ' -n,k 

I n+1 

nH " n+k+ll'2       otherwise . p-n 

The relation  (2.3)    provides a modified method of carrying out the 

backward induction which we shall call the truncation method;     At    s'   = 1, 

the risks are specified by    d(y,s).     At any stage    s*   = l+n»A,     compute 

l/2 the risk at    y'   = c+2»A by means of   (2.3).     The risks at the levels 

1/2 y'   = c+k»A for    k = 1,0,-1,-2,....     are computed using the algorithm 

(2.1) in the fashion described above. 

Returning for a moment to the one-armed bandit problem,  it is well- 

known   (and obvious from  (l.k)) that changing the stopping cost function 

d(y,s)    by adding to it any solution of the heat equation leaves the 

optimal continuation region unchanged.    For the present purposes,  it is 

convenient to consider the new stopping cost function    cL(y,s)    defined 

by    d0(ys,s) = d(y,s)  + y,     that is, 

(2.6) dn(y,s) = y - y/s 

for s > 1 with stopping enforced at s = 1. Note that d0(y,l) s 0 . 

Denoting the corresponding optimal risk by P0(y>s), the algorithm (2.1) 

becomes 



(2.7)   p£(y,l-m»A) = min{d0(y« ,l+n»A), |[p^(y' +A
l/2

;l^(n-l). A) 

+ p-Cy-A^A+O^i)^)]} 

for n > 1 with Pl(y%l) = 0. Further, the relation (2.3) becomes 

(2.8)        p« (c+2»A1/2,l+^A) = I Pm.p^(c+A
l/2,I+(n-m>A) . 

m=l 

This reduces the computation involved in carrying out the truncation method. 

To this point we have simply described the direct and truncation methods 

of carrying out the backward induction algorithm for the Y'(sJ ) process 

when the motion of the process is restricted to a grid specified by a 

parameter c. Implementing the algorithm for a sequence of c values 

(with the same fixed value of A) allows the sequence {y (A)} to be 

determined to within any desired degree of accuracy. 

3o  A Refined Approximation 

In the previous section we have presented simple methods of obtaining 

initial approximations to the solutions of optimal stopping problems for 

a zero drift standard Wiener process. These methods involve replacing the 

Wiener process problem by an analogous discrete problem involving dichotomous 

random variables» The relation of the solution of any such Wiener process 

problem to the solutions of an entire class of analogous discrete problems 

is considered in Chernoff and Petkau (1976). A particular result of that 

paper is the following simple approximate relation between the optimal 

boundary of the Wiener process and the optimal boundary for the particular 
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analogous discrete problem described in the previous section 

-i/o 

(3.1) y(l+n.A) = yn(A) + 0.5 &' 

(the sign being determined so as to make the continuation region for the 

Wiener process problem larger).  For the one-armed bandit problem, this 

leads to the following refinement of (2.2) 

1 /p 
(3.2) y(l+n.A) * yn(A) -0.5A

; 

To illustrate the accuracy of these approximations, it would be 

desirable to evaluate these approximations in a Wiener process problem 

for which the exact solution is known. A normalized version of a problem 

discussed in Van Moerbeke (197*0 is the following:  (X(s), 0 < s < l) is 

a zero drift standard Wiener process.  One is permitted to stop the process 

at any time s}    0 < s < 1. • The reward for stopping the process at the 

point (x,s) is given by g(x,s) defined by 

(3.3)- g(x^s) = 

l-s+2x2   for x >.0 

1-s      for x < 0 

The problem is to find a stopping time that maximizes the expected reward. 

Van Moerbeke (197*+) proves that the optimal continuation region for this 

problem can be described as ((x,s): x > x(s), 0 < s < l) where 

l/2 
x(s) = -a  (l-s)    and a is the solution of the simple equation 



a 
'o 

/I CO Q 

I  exp[\a-\ /2]d\ = 1 which can easily be determined to be 
J0 

A 2 
a = 0e506lo Modifying the reward function to be g(x,s) = g(x,s)-2[x +l-s] 

does not change the solution of this problem and it is easily seen that 

the methods of the previous section are directly applicable (in particular, 

g(x,l) =0 for x > O). 

Ibis Wiener process problem has been approximated by three different 

analogous discrete problems, those corresponding to A = 0.01, 0.0025 and 

O.OOO625»  In addition, for each fixed value of A the computations were 

l/2 carried out for values of the parameter c varying from 0 to A '       in 

steps of 0.001. Bras each individual member of each of the three sequences 

[x (A)} is located to within an error of 0.001.  In addition the corrected 

sequences  {X*(A)J defined by X*(A) = x (A)-0.5A /  were'evaluated. 

These six approximating sequences and the exact solution x are illustrated 

in Figure 1 in the  (x,s) scale.  Here  x = [x (O.Ol)}', 

x = {x (O.OO25)}, SL, = {x (O.OOO625)) and similarly x* = {x*(0.0l)), 

x* = {x*(0.0025)), x* = {x*(0.000625)}o This figure clearly illustrates 

that for this particular problem whereas the approximations provided by 

x.,, Xp and x^ are quite crude, the approximations provided by x*, x* 

and x^ (particularly both Xp and x?)    are exceptionally accurate, 

being virtually indistinguishable from each other and from the exact 

solution.  The fact that x^ is not too accurate reflects the fact that 

when using these approximations, one must begin with a reasonably small 

value of A. 
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The exceptional performance of the refined approximation (3.1) in 

Van Moerbeke's problem leads us to hope that the same type of behavior 

will occur in the one-armed bandit problem.  In order to examine this 

possibility";, the one-armed bandit problem was approximated by three different 

analogous discrete problems, those corresponding to A = 1.0, 0.25 and 

0*0625. For each fixed value of A the computations were carried out for 

the region 1 < s < 100 and for values of the parameter c varying from 

1/2 
0 to A    in steps of 0.01.  Thus each individual member of each of the 

three sequences  {y (A)} is located to within an error of 0.01.  In 

~ ~     ~       1/2 
addition the corrected sequences (y*(A)} defined by y*(A) = y (A)-0.5A 

were evaluated. These six approximating- sequences are illustrated in 

Figure 2. Here y±  = fyJl.O)}, yg - {yn(0.25)}, y^  = {yn(0.0625)} and 

similarly y* = (y*(l.0)}, y* = {y*(0.25)}, yj - {y* ,0.0625)}. This figure 

clearly indicates that for the one-armed bandit problem the approximations 

provided by y*, y* and y* are exceptionally accurate, these curves being 

indistinguishable from one another. 

As  pointed out in the introduction, for applications of the solution 

of the one-armed bandit problem, the  (z,t) scale where z = -y/s and 

t = l/s is more appropriate.  In order to obtain an accurate approximation 

to the optimal stopping boundary in the  (z,t) scale in as efficient a 

manner as possible, the computations were carried out as follows:  Beginning 

with a very small value of A,  the boundary was approximated in a small 

interval of s in the manner described above.  Successively larger values 

of A were then employed to approximate the boundary in successively 

larger intervals of s.  These approximations to the optimal boundary, 
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determined in overlapping intervals of s, were then superimposed to 

obtain the final approximation to the optimal boundary» Since the values 

of A used were chosen in such a way as to yield the desired accuracy, 

only the value c = 0 was used in these computations«, The computations 

were carried out using both the direct and the truncation method. The 

truncation method reduced the computation time required by a factor of 

two.  The resulting approximation to the optimal stopping boundary and 

the asymptotic expansions of Chernoff and Ray "(1965) are illustrated in 

Figure 3. Here z0 and z^  denote the boundaries obtained using the 

asymptotic expansions for t close to 0  (s large) and t close to 

1 (s close to l) respectively and z denotes the boundary obtained by 

means of the computations described above. 

h.      Discussion 

The optimal stopping boundary for the one-armed bandit problem has 

been approximated before and appears in the literature in both Mallik 

(1971) and Chernoff (1972). These previous approximations were determined 

without the benefit of the "correction for continuity" given in (5.1). 

The purpose of the present paper was to describe explicitly how these 

boundaries could be determined, to demonstrate that exceptional accuracy 

is possible and to indicate that these computations can be quite efficient. 

Obtaining the present approximation to the boundary of the one-armed bandit 

problem involved ten separate runs, the i-th run approximating the boundary 

in the region s = 1 to s = 1+100OA using a grid determined by 

-h  , i-1 
A = 10 »4  „  The entire computation, approximating the boundary in the 
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region 1 < s < 25_,000., required just l^l- seconds of computation time on 

the IBM 370/l68 at U.B«C.  The objective in the present computation was 

to obtain an accurate approximation in the  (z^t) scale.  Detailed 

examination of the output leads to the empirical estimate that in the 

(z,t) scale the boundary has been located to within an error of about 

0.002. 

As indicated in the introduction,, these same methods could be 

applied with equal facility to any optimal stopping problem of the general 

form described there.  (in Petkau (1977) these methods have been employed 

to obtain the optimal continuation region for a stopping problem in which 

the optimal continuation region can be described as the set 

Uy>s): y1(s) < y < y2(s), s > l) where y1(s) / y2(s). ) The connection 

between such optimal stopping problems and free boundary problems involving 

the heat equation of the form (l.h)  makes it clear that these same methods 

could be used to determine numerical solutions of such free boundary 

problems» The problem of obtaining numerical solutions to free boundary 

problems has received considerable attention in the literature (see for 

example Sackett (1971) and Meyer (1977))» Whether the methods proposed 

here provide a reasonable alternative to these more general, methods is a 

question that remains to be answered« 
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